The Descent of Man – Day 119 of 151

Class III

When the adult male resembles the adult female, the young of both sexes have a peculiar first plumage of their own.

In this class the sexes when adult resemble each other, and differ from the young. This occurs with many birds of many kinds. The male robin can hardly be distinguished from the female, but the young are widely different, with their mottled dusky-olive and brown plumage. The male and female of the splendid scarlet ibis are alike, whilst the young are brown; and the scarlet colour, though common to both sexes, is apparently a sexual character, for it is not well developed in either sex under confinement; and a loss of colour often occurs with brilliant males when they are confined. With many species of herons the young differ greatly from the adults; and the summer plumage of the latter, though common to both sexes, clearly has a nuptial character. Young swans are slate-coloured, whilst the mature birds are pure white; but it would be superfluous to give additional instances. These differences between the young and the old apparently depend, as in the last two classes, on the young having retained a former or ancient state of plumage, whilst the old of both sexes have acquired a new one. When the adults are bright coloured, we may conclude from the remarks just made in relation to the scarlet ibis and to many herons, and from the analogy of the species in the first class, that such colours have been acquired through sexual selection by the nearly mature males; but that, differently from what occurs in the first two classes, the transmission, though limited to the same age, has not been limited to the same sex. Consequently, the sexes when mature resemble each other and differ from the young.

Class IV

When the adult male resembles the adult female, the young of both sexes in their first plumage resemble the adults.

In this class the young and the adults of both sexes, whether brilliantly or obscurely coloured, resemble each other. Such cases are, I think, more common than those in the last class. We have in England instances in the kingfisher, some woodpeckers, the jay, magpie, crow, and many small dull-coloured birds, such as the hedge-warbler or kitty-wren. But the similarity in plumage between the young and the old is never complete, and graduates away into dissimilarity. Thus the young of some members of the kingfisher family are not only less vividly coloured than the adults, but many of the feathers on the lower surface are edged with brown (27. Jerdon, ‘Birds of India,’ vol. i. pp. 222, 228. Gould’s ‘Handbook to the Birds of Australia,’ vol. i. pp. 124, 130.),–a vestige probably of a former state of the plumage. Frequently in the same group of birds, even within the same genus, for instance in an Australian genus of parrakeets (Platycercus), the young of some species closely resemble, whilst the young of other species differ considerably, from their parents of both sexes, which are alike. (28. Gould, ibid. vol. ii. pp. 37, 46, 56.) Both sexes and the young of the common jay are closely similar; but in the Canada jay (Perisoreus canadensis) the young differ so much from their parents that they were formerly described as distinct species. (29. Audubon, ‘Ornith. Biography,’ vol. ii. p. 55.)

I may remark before proceeding that, under the present and next two classes of cases, the facts are so complex and the conclusions so doubtful, that any one who feels no especial interest in the subject had better pass them over.

The brilliant or conspicuous colours which characterise many birds in the present class, can rarely or never be of service to them as a protection; so that they have probably been gained by the males through sexual selection, and then transferred to the females and the young. It is, however, possible that the males may have selected the more attractive females; and if these transmitted their characters to their offspring of both sexes, the same results would follow as from the selection of the more attractive males by the females. But there is evidence that this contingency has rarely, if ever, occurred in any of those groups of birds in which the sexes are generally alike; for, if even a few of the successive variations had failed to be transmitted to both sexes, the females would have slightly exceeded the males in beauty. Exactly the reverse occurs under nature; for, in almost every large group in which the sexes generally resemble each other, the males of some few species are in a slight degree more brightly coloured than the females. It is again possible that the females may have selected the more beautiful males, these males having reciprocally selected the more beautiful females; but it is doubtful whether this double process of selection would be likely to occur, owing to the greater eagerness of one sex than the other, and whether it would be more efficient than selection on one side alone. It is, therefore, the most probable view that sexual selection has acted, in the present class, as far as ornamental characters are concerned, in accordance with the general rule throughout the animal kingdom, that is, on the males; and that these have transmitted their gradually-acquired colours, either equally or almost equally, to their offspring of both sexes.

Another point is more doubtful, namely, whether the successive variations first appeared in the males after had become nearly mature, or whilst quite young. In either case sexual selection must have acted on the male when he had to compete with rivals for the possession of the female; and in both cases the characters thus acquired have been transmitted to both sexes and all ages. But these characters if acquired by the males when adult, may have been transmitted at first to the adults alone, and at some subsequent period transferred to the young. For it is known that, when the law of inheritance at corresponding ages fails, the offspring often inherit characters at an earlier age than that at which they first appeared in their parents. (30. ‘Variation of Animals and Plants under Domestication,’ vol. ii. p. 79.) Cases apparently of this kind have been observed with birds in a state of nature. For instance Mr. Blyth has seen specimens of Lanius rufus and of Colymbus glacialis which had assumed whilst young, in a quite anomalous manner, the adult plumage of their parents. (31. ‘Charlesworth’s Magazine of Natural History,’ vol. i. 1837, pp. 305, 306.) Again, the young of the common swan (Cygnus olor) do not cast off their dark feathers and become white until eighteen months or two years old; but Dr. F. Forel has described the case of three vigorous young birds, out of a brood of four, which were born pure white. These young birds were not albinos, as shewn by the colour of their beaks and legs, which nearly resembled the same parts in the adults. (32. ‘Bulletin de la Soc. Vaudoise des Sc. Nat.’ vol. x. 1869, p. 132. The young of the Polish swan, Cygnus immutabilis of Yarrell, are always white; but this species, as Mr. Sclater informs me, is believed to be nothing more than a variety of the domestic swan (Cygnus olor).)

It may be worth while to illustrate the above three modes by which, in the present class, the two sexes and the young may have come to resemble each other, by the curious case of the genus Passer. (33. I am indebted to Mr. Blyth for information in regard to this genus. The sparrow of Palestine belongs to the sub-genus Petronia.) In the house-sparrow (P. domesticus) the male differs much from the female and from the young. The young and the females are alike, and resemble to a large extent both sexes and the young of the sparrow of Palestine (P. brachydactylus), as well as of some allied species. We may therefore assume that the female and young of the house-sparrow approximately shew us the plumage of the progenitor of the genus. Now with the tree-sparrow (P. montanus) both sexes and the young closely resemble the male of the house-sparrow; so that they have all been modified in the same manner, and all depart from the typical colouring of their early progenitor. This may have been effected by a male ancestor of the tree-sparrow having varied, firstly, when nearly mature; or, secondly, whilst quite young, and by having in either case transmitted his modified plumage to the females and the young; or, thirdly, he may have varied when adult and transmitted his plumage to both adult sexes, and, owing to the failure of the law of inheritance at corresponding ages, at some subsequent period to his young.

It is impossible to decide which of these three modes has generally prevailed throughout the present class of cases. That the males varied whilst young, and transmitted their variations to their offspring of both sexes, is the most probable. I may here add that I have, with little success, endeavoured, by consulting various works, to decide how far the period of variation in birds has generally determined the transmission of characters to one sex or to both. The two rules, often referred to (namely, that variations occurring late in life are transmitted to one and the same sex, whilst those which occur early in life are transmitted to both sexes), apparently hold good in the first (34. For instance, the males of Tanagra aestiva and Fringilla cyanea require three years, the male of Fringilla ciris four years, to complete their beautiful plumage. (See Audubon, ‘Ornith. Biography,’ vol. i. pp. 233, 280, 378). The Harlequin duck takes three years (ibid. vol. iii. p. 614). The male of the Gold pheasant, as I hear from Mr. Jenner Weir, can be distinguished from the female when about three months old, but he does not acquire his full splendour until the end of the September in the following year.), second, and fourth classes of cases; but they fail in the third, often in the fifth (35. Thus the Ibis tantalus and Grus americanus take four years, the Flamingo several years, and the Ardea ludovicana two years, before they acquire their perfect plumage. See Audubon, ibid. vol. i. p. 221; vol. iii. pp. 133, 139, 211.), and in the sixth small class. They apply, however, as far as I can judge, to a considerable majority of the species; and we must not forget the striking generalisation by Dr. W. Marshall with respect to the protuberances on the heads of birds. Whether or not the two rules generally hold good, we may conclude from the facts given in the eighth chapter, that the period of variation is one important element in determining the form of transmission.

With birds it is difficult to decide by what standard we ought to judge of the earliness or lateness of the period of variation, whether by the age in reference to the duration of life, or to the power of reproduction, or to the number of moults through which the species passes. The moulting of birds, even within the same family, sometimes differs much without any assignable cause. Some birds moult so early, that nearly all the body feathers are cast off before the first wing-feathers are fully grown; and we cannot believe that this was the primordial state of things. When the period of moulting has been accelerated, the age at which the colours of the adult plumage are first developed will falsely appear to us to be earlier than it really is. This may be illustrated by the practice followed by some bird-fanciers, who pull out a few feathers from the breast of nestling bullfinches, and from the head or neck of young gold-pheasants, in order to ascertain their sex; for in the males, these feathers are immediately replaced by coloured ones. (36. Mr. Blyth, in Charlesworth’s ‘Magazine of Natural History,’ vol. i. 1837, p. 300. Mr. Bartlett has informed me in regard to gold pheasants.) The actual duration of life is known in but few birds, so that we can hardly judge by this standard. And, with reference to the period at which the power of reproduction is gained, it is a remarkable fact that various birds occasionally breed whilst retaining their immature plumage. (37. I have noticed the following cases in Audubon’s ‘Ornith. Biography.’ The redstart of America (Muscapica ruticilla, vol. i. p. 203). The Ibis tantalus takes four years to come to full maturity, but sometimes breeds in the second year (vol. iii. p. 133). The Grus americanus takes the same time, but breeds before acquiring its full plumage (vol. iii. p. 211). The adults of Ardea caerulea are blue, and the young white; and white, mottled, and mature blue birds may all be seen breeding together (vol. iv. p. 58): but Mr. Blyth informs me that certain herons apparently are dimorphic, for white and coloured individuals of the same age may be observed. The Harlequin duck (Anas histrionica, Linn.) takes three years to acquire its full plumage, though many birds breed in the second year (vol. iii. p. 614). The White-headed Eagle (Falco leucocephalus, vol. iii. p. 210) is likewise known to breed in its immature state. Some species of Oriolus (according to Mr. Blyth and Mr. Swinhoe, in ‘Ibis,’ July 1863, p. 68) likewise breed before they attain their full plumage.)

The fact of birds breeding in their immature plumage seems opposed to the belief that sexual selection has played as important a part, as I believe it has, in giving ornamental colours, plumes, etc., to the males, and, by means of equal transmission, to the females of many species. The objection would be a valid one, if the younger and less ornamented males were as successful in winning females and propagating their kind, as the older and more beautiful males. But we have no reason to suppose that this is the case. Audubon speaks of the breeding of the immature males of Ibis tantalus as a rare event, as does Mr. Swinhoe, in regard to the immature males of Oriolus. (38. See footnote 37 above.) If the young of any species in their immature plumage were more successful in winning partners than the adults, the adult plumage would probably soon be lost, as the males would prevail, which retained their immature dress for the longest period, and thus the character of the species would ultimately be modified. (39. Other animals, belonging to quite distinct classes, are either habitually or occasionally capable of breeding before they have fully acquired their adult characters. This is the case with the young males of the salmon. Several amphibians have been known to breed whilst retaining their larval structure. Fritz Muller has shewn (‘Facts and arguments for Darwin,’ Eng. trans. 1869, p. 79) that the males of several amphipod crustaceans become sexually mature whilst young; and I infer that this is a case of premature breeding, because they have not as yet acquired their fully-developed claspers. All such facts are highly interesting, as bearing on one means by which species may undergo great modifications of character.) If, on the other hand, the young never succeeded in obtaining a female, the habit of early reproduction would perhaps be sooner or later eliminated, from being superfluous and entailing waste of power.

The plumage of certain birds goes on increasing in beauty during many years after they are fully mature; this is the case with the train of the peacock, with some of the birds of paradise, and with the crest and plumes of certain herons, for instance, the Ardea ludovicana. (40. Jerdon, ‘Birds of India,’ vol. iii. p. 507, on the peacock. Dr. Marshall thinks that the older and more brilliant males of birds of paradise, have an advantage over the younger males; see ‘Archives Neerlandaises,’ tom. vi. 1871.–On Ardea, Audubon, ibid. vol. iii. p. 139.) But it is doubtful whether the continued development of such feathers is the result of the selection of successive beneficial variations (though this is the most probable view with birds of paradise) or merely of continuous growth. Most fishes continue increasing in size, as long as they are in good health and have plenty of food; and a somewhat similar law may prevail with the plumes of birds.

Post a Comment

Your email is never published nor shared. (To tell the truth I don't even really care if you give me your email or not.)