The Descent of Man – Day 41 of 151

Conclusion

Von Baer has defined advancement or progress in the organic scale better than any one else, as resting on the amount of differentiation and specialisation of the several parts of a being,–when arrived at maturity, as I should be inclined to add. Now as organisms have become slowly adapted to diversified lines of life by means of natural selection, their parts will have become more and more differentiated and specialised for various functions from the advantage gained by the division of physiological labour. The same part appears often to have been modified first for one purpose, and then long afterwards for some other and quite distinct purpose; and thus all the parts are rendered more and more complex. But each organism still retains the general type of structure of the progenitor from which it was aboriginally derived. In accordance with this view it seems, if we turn to geological evidence, that organisation on the whole has advanced throughout the world by slow and interrupted steps. In the great kingdom of the Vertebrata it has culminated in man. It must not, however, be supposed that groups of organic beings are always supplanted, and disappear as soon as they have given birth to other and more perfect groups. The latter, though victorious over their predecessors, may not have become better adapted for all places in the economy of nature. Some old forms appear to have survived from inhabiting protected sites, where they have not been exposed to very severe competition; and these often aid us in constructing our genealogies, by giving us a fair idea of former and lost populations. But we must not fall into the error of looking at the existing members of any lowly-organised group as perfect representatives of their ancient predecessors.

The most ancient progenitors in the kingdom of the Vertebrata, at which we are able to obtain an obscure glance, apparently consisted of a group of marine animals (32. The inhabitants of the seashore must be greatly affected by the tides; animals living either about the mean high-water mark, or about the mean low-water mark, pass through a complete cycle of tidal changes in a fortnight. Consequently, their food supply will undergo marked changes week by week. The vital functions of such animals, living under these conditions for many generations, can hardly fail to run their course in regular weekly periods. Now it is a mysterious fact that in the higher and now terrestrial Vertebrata, as well as in other classes, many normal and abnormal processes have one or more whole weeks as their periods; this would be rendered intelligible if the Vertebrata are descended from an animal allied to the existing tidal Ascidians. Many instances of such periodic processes might be given, as the gestation of mammals, the duration of fevers, etc. The hatching of eggs affords also a good example, for, according to Mr. Bartlett (‘Land and Water,’ Jan. 7, 1871), the eggs of the pigeon are hatched in two weeks; those of the fowl in three; those of the duck in four; those of the goose in five; and those of the ostrich in seven weeks. As far as we can judge, a recurrent period, if approximately of the right duration for any process or function, would not, when once gained, be liable to change; consequently it might be thus transmitted through almost any number of generations. But if the function changed, the period would have to change, and would be apt to change almost abruptly by a whole week. This conclusion, if sound, is highly remarkable; for the period of gestation in each mammal, and the hatching of each bird’s eggs, and many other vital processes, thus betray to us the primordial birthplace of these animals.), resembling the larvae of existing Ascidians. These animals probably gave rise to a group of fishes, as lowly organised as the lancelet; and from these the Ganoids, and other fishes like the Lepidosiren, must have been developed. From such fish a very small advance would carry us on to the Amphibians. We have seen that birds and reptiles were once intimately connected together; and the Monotremata now connect mammals with reptiles in a slight degree. But no one can at present say by what line of descent the three higher and related classes, namely, mammals, birds, and reptiles, were derived from the two lower vertebrate classes, namely, amphibians and fishes. In the class of mammals the steps are not difficult to conceive which led from the ancient Monotremata to the ancient Marsupials; and from these to the early progenitors of the placental mammals. We may thus ascend to the Lemuridae; and the interval is not very wide from these to the Simiadae. The Simiadae then branched off into two great stems, the New World and Old World monkeys; and from the latter, at a remote period, Man, the wonder and glory of the Universe, proceeded.

Thus we have given to man a pedigree of prodigious length, but not, it may be said, of noble quality. The world, it has often been remarked, appears as if it had long been preparing for the advent of man: and this, in one sense is strictly true, for he owes his birth to a long line of progenitors. If any single link in this chain had never existed, man would not have been exactly what he now is. Unless we wilfully close our eyes, we may, with our present knowledge, approximately recognise our parentage; nor need we feel ashamed of it. The most humble organism is something much higher than the inorganic dust under our feet; and no one with an unbiassed mind can study any living creature, however humble, without being struck with enthusiasm at its marvellous structure and properties.

Chapter VII: On the Races of Man

  • The nature and value of specific characters
  • Application to the races of man
  • Arguments in favour of, and opposed to, ranking the so-called races of man as district species
  • Sub-species
  • Monogenists and polygenists
  • Convergence of character
  • Numerous points of resemblance in body and mind between the most distinct races of man
  • The state of man when he first spread over the earth
  • Each race not descended from a single pair
  • The extinction of races
  • The formation of races
  • The effects of crossing
  • Slight influence of the direct action of the conditions of life
  • Slight or no influence of natural selection
  • Sexual selection.

It is not my intention here to describe the several so-called races of men; but I am about to enquire what is the value of the differences between them under a classificatory point of view, and how they have originated. In determining whether two or more allied forms ought to be ranked as species or varieties, naturalists are practically guided by the following considerations; namely, the amount of difference between them, and whether such differences relate to few or many points of structure, and whether they are of physiological importance; but more especially whether they are constant. Constancy of character is what is chiefly valued and sought for by naturalists. Whenever it can be shewn, or rendered probable, that the forms in question have remained distinct for a long period, this becomes an argument of much weight in favour of treating them as species. Even a slight degree of sterility between any two forms when first crossed, or in their offspring, is generally considered as a decisive test of their specific distinctness; and their continued persistence without blending within the same area, is usually accepted as sufficient evidence, either of some degree of mutual sterility, or in the case of animals of some mutual repugnance to pairing.

Independently of fusion from intercrossing, the complete absence, in a well-investigated region, of varieties linking together any two closely-allied forms, is probably the most important of all the criterions of their specific distinctness; and this is a somewhat different consideration from mere constancy of character, for two forms may be highly variable and yet not yield intermediate varieties. Geographical distribution is often brought into play unconsciously and sometimes consciously; so that forms living in two widely separated areas, in which most of the other inhabitants are specifically distinct, are themselves usually looked at as distinct; but in truth this affords no aid in distinguishing geographical races from so-called good or true species.

Now let us apply these generally-admitted principles to the races of man, viewing him in the same spirit as a naturalist would any other animal. In regard to the amount of difference between the races, we must make some allowance for our nice powers of discrimination gained by the long habit of observing ourselves. In India, as Elphinstone remarks, although a newly-arrived European cannot at first distinguish the various native races, yet they soon appear to him extremely dissimilar (1. ‘History of India,’ 1841, vol. i. p. 323. Father Ripa makes exactly the same remark with respect to the Chinese.); and the Hindoo cannot at first perceive any difference between the several European nations. Even the most distinct races of man are much more like each other in form than would at first be supposed; certain negro tribes must be excepted, whilst others, as Dr. Rohlfs writes to me, and as I have myself seen, have Caucasian features. This general similarity is well shewn by the French photographs in the Collection Anthropologique du Museum de Paris of the men belonging to various races, the greater number of which might pass for Europeans, as many persons to whom I have shewn them have remarked. Nevertheless, these men, if seen alive, would undoubtedly appear very distinct, so that we are clearly much influenced in our judgment by the mere colour of the skin and hair, by slight differences in the features, and by expression.

Post a Comment

Your email is never published nor shared. (To tell the truth I don't even really care if you give me your email or not.)